
Implementing
Counters with Decay

Christian Schulte
KTH Royal Institute of Technology, Sweden

1
0

/1
/2

0
1

3

C
h

ri
st

ia
n

 S
ch

u
lt

e,
 K

TH

1

Decaying Counters

• Counters for counting events used in search heuristics
• AFC (accumulated failure count = weighted degree)

 count how often a constraint has failed

 sum up over all constraints of a variable

 [Boussemart et al., ECAI 2004]

• activity

 count how often a variable has been pruned

 [Michel, Van Hentenryck, CPAIOR 2012]

• Values should decay as search progresses
• random restarts: must decay

• Decay: if counter not incremented, scale with decay factor 
(0 <  ≤ 1)

1
0

/1
/2

0
1

3

C
h

ri
st

ia
n

 S
ch

u
lt

e,
 K

TH

2

Problem

• Data structures
• counters c1, …, cn (floating point numbers, C++: double)

• Implementation
proc inc(i) = ci  ci + 1; forall j ≠ i do cj  cj  ;

fun val(i) = return ci;

• complexity of inc(i): O(n)

• But: counter set possibly not known when doing inc(i)
• no forall possible

• But: inc(i) might suffer from contention with parallel search
• all counters must be locked and O(n) operations!

1
0

/1
/2

0
1

3

C
h

ri
st

ia
n

 S
ch

u
lt

e,
 K

TH

3

Solution

• Data structures
• counters ci = ni, ti “value, timestamp”

• global timestamp t

• Implementation
proc inc(i) = ni  ni  pow(, t – ti) + 1; t  t + 1; ti  t;

fun val(i) = ni  ni  pow(, t – ti); ti  t; return ni;

• complexity of inc(i): O(1)

• AFC: often O(n2) calls to val(i) for each call to inc(i)

• Optimizations
• cache for likely exponents of pow (which is expensive to compute)

• do not do anything for =1

1
0

/1
/2

0
1

3

C
h

ri
st

ia
n

 S
ch

u
lt

e,
 K

TH

4

