Implementing
Counters with Decay

Christian Schulte
KTH Royal Institute of Technology, Sweden

Decaying Counters

* Counters for counting events used in search heuristics
AFC (accumulated failure count = weighted degree)

activity

count how often a constraint has failed
sum up over all constraints of a variable
[Boussemart et al., ECAl 2004]

count how often a variable has been pruned
[Michel, Van Hentenryck, CPAIOR 2012]

* Values should decay as search progresses
random restarts: must decay

* Decay: if counter not incremented, scale with decay factor y

(0<y<1)

10/1/2013

I
|_
4
CL;
=
>
=
(&}
(%)
C
e
+—
(%]
=
G
O

—
N
—

Problem

Data structures

counters ¢y, ..., C, (floating point numbers, C++: double)

o™
—
o
o
S~
—
By
o
i

Implementation

. N T
proc inc(i) = ¢ ¢+l foralljzidoc —c-v; =
funval(i) = return ¢; Z
5

complexity of inc(/): O(n) ‘r”%

g

O

But: counter set possibly not known when doing inc(i)
no forall possible

But: inc(/) might suffer from contention with parallel search

all counters must be locked and O(n) operations!

—
w
—

Solution

* Data structures

counters ¢;={n,, t,) “({value, timestamp)”
global timestamp t

10/1/2013

* Implementation
procinc(i) =n, < n;-pow(y,t—t)+1;t—t+1;t <t
funval(i) =n, < n,-pow(y, t—t); t, < t; returnn;
complexity of inc(/): O(1)

I
|_
4
GJ\
=
>
=
(&}
(%)
C
e
+—
(%]
=
G
O

AFC: often O(n?) calls to val(i) for each call to inc(/)

* Optimizations

cache for likely exponents of pow (which is expensive to compute)

—
S
—

do not do anything for y=1

